Browsing by Author "Deenick, Elissa K."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Functional STAT3 deficiency compromises the generation of human T follicular helper cells(The American Society of Hematology, 2012-04-26) Ma, Cindy S.; Avery, Danielle T.; Chan, Anna; Batten, Marcel; Bustamante, Jacinta; Boisson-Dupuis, Stephanie; Arkwright, Peter D.; Kreins, Alexandra Y.; Averbuch, Diana; Engelhard, Dan; Magdorf, Klaus; Minegishi, Yoshiyuki; Nonoyama, Shigeaki; French, Martyn A.; Choo, Sharon; Smart, Joanne M.; Peake, Jane; Wong, Melanie; Gray, Paul; Cook, Matthew C.; Fulcher, David A.; Casanova, Jean-Laurent; Deenick, Elissa K.; Tangye, Stuart G.; Kılıç, Sara Şebnem; Uludağ Üniversitesi/Tıp Fakültesi/Pediatri Anabilim Dalı.; 0000-0001-8571-2581; AAH-1658-2021; 34975059200T follicular helper (Tfh) cells are critical for providing the necessary signals to induce differentiation of B cells into memory and Ab-secreting cells. Accordingly, it is important to identify the molecular requirements for Tfh cell development and function. We previously found that IL-12 mediates the differentiation of human CD4(+) T cells to the Tfh lineage, because IL-12 induces naive human CD4(+) T cells to acquire expression of IL-21, BCL6, ICOS, and CXCR5, which typify Tfh cells. We have now examined CD4(+) T cells from patients deficient in IL-12R beta 1, TYK2, STAT1, and STAT3 to further explore the pathways involved in human Tfh cell differentiation. Although STAT1 was dispensable, mutations in IL12RB1, TYK2, or STAT3 compromised IL-12-induced expression of IL-21 by human CD4(+) T cells. Defective expression of IL-21 by STAT3-deficient CD4(+) T cells resulted in diminished B-cell helper activity in vitro. Importantly, mutations in STAT3, but not IL12RB1 or TYK2, also reduced Tfh cell generation in vivo, evidenced by decreased circulating CD4(+)CXCR5(+) T cells. These results highlight the nonredundant role of STAT3 in human Tfh cell differentiation and suggest that defective Tfh cell development and/or function contributes to the humoral defects observed in STAT3-deficient patients.Publication Monogenic mutations differentially affect the quantity and quality of t follicular helper cells in patients with human primary immunodeficiencies(Mosby-elsevier, 2015-10-01) Ma, Cindy S.; Wong, Natalie; Rao, Geetha; Avery, Danielle T.; Torpy, James; Hambridge, Thomas; Bustamante, Jacinta; Okada, Satoshi; Stoddard, Jennifer L.; Deenick, Elissa K.; Pelham, Simon J.; Payne, Kathryn; Boisson-Dupuis, Stephanie; Puel, Anne; Kobayashi, Masao; Arkwright, Peter D.; El Baghdadi, Jamila; Nonoyama, Shigeaki; Minegishi, Yoshiyuki; Mahdaviani, Seyed Alireza; Mansouri, Davood; Bousfiha, Aziz; Blincoe, Annaliesse K.; French, Martyn A.; Hsu, Peter; Campbell, Dianne E.; Stormon, Michael O.; Wong, Melanie; Adelstein, Stephen; Smart, Joanne M.; Fulcher, David A.; Cook, Matthew C.; Phan, Tri Giang; Stepensky, Polina; Boztug, Kaan; Kansu, Aydan; Ikinciogullari, Aydan; Baumann, Ulrich; Beier, Rita; Roscioli, Tony; Ziegler, John B.; Gray, Paul; Picard, Capucine; Grimbacher, Bodo; Warnatz, Klaus; Holland, Steven M.; Casanova, Jean-Laurent; Uzel, Gulbu; Tangye, Stuart G.; Kılıç, Sara Şebnem; KILIÇ GÜLTEKİN, SARA ŞEBNEM; Bursa Uludağ Üniversitesi/Tıp Fakültesi/İmmunoloji Anabilim Dalı.; 0000-0001-8571-2581Background: Follicular helper T (T-FH) cells underpin T cell-dependent humoral immunity and the success of most vaccines. T-FH cells also contribute to human immune disorders, such as autoimmunity, immunodeficiency, and malignancy. Understanding the molecular requirements for the generation and function of T-FH cells will provide strategies for targeting these cells to modulate their behavior in the setting of these immunologic abnormalities.Objective: We sought to determine the signaling pathways and cellular interactions required for the development and function of T-FH cells in human subjects.Methods: Human primary immunodeficiencies (PIDs) resulting from monogenic mutations provide a unique opportunity to assess the requirement for particular molecules in regulating human lymphocyte function. Circulating follicular helper T (cT(FH)) cell subsets, memory B cells, and serum immunoglobulin levels were quantified and functionally assessed in healthy control subjects, as well as in patients with PIDs resulting from mutations in STAT3, STAT1, TYK2, IL21, IL21R, IL10R, IFNGR1/2, IL12RB1, CD40LG, NEMO, ICOS, or BTK.Results: Loss-of-function (LOF) mutations in STAT3, IL10R, CD40LG, NEMO, ICOS, or BTK reduced cT(FH) cell frequencies. STAT3 and IL21/R LOF and STAT1 gain-of-function mutations skewed cT(FH) cell differentiation toward a phenotype characterized by overexpression of IFN-gamma and programmed death 1. IFN-gamma inhibited cT(FH) cell function in vitro and in vivo, as corroborated by hypergammaglobulinemia in patients with IFNGR1/2, STAT1, and IL12RB1 LOF mutations.Conclusion: Specific mutations affect the quantity and quality of cT(FH) cells, highlighting the need to assess T-FH cells in patients by using multiple criteria, including phenotype and function. Furthermore, IFN-gamma functions in vivo to restrain T-FH cell-induced B-cell differentiation. These findings shed new light on T-FH cell biology and the integrated signaling pathways required for their generation, maintenance, and effector function and explain the compromised humoral immunity seen in patients with some PIDs.