Browsing by Author "KANIK, MEHMET"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Publication An investigation on the thermal and solar properties of graphene-coated polyester fabrics(MDPİ, 2021-02-01) Manasoglu, Gizem; MANASOĞLU, GİZEM; Celen, Rumeysa; ÇELEN, RUMEYSA; Kanik, Mehmet; KANIK, MEHMET; Ulcay, Yusuf; ULCAY, YUSUF; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü.; 0000-0002-1504-8694; 0000-0002-2972-8295; JTS-3559-2023; AAI-8441-2021; AAI-8087-2021; IZE-4329-2023In this study, coatings were made with graphene nanopowder in two different thicknesses (0.1 and 0.5 mm) at three different concentrations (50, 100 and 150 g/kg) on polyester woven fabrics. The effects of the coating thickness and graphene concentration were examined with optical and scanning electron microscopy (SEM) images. The thermal stability properties of the samples were also evaluated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Thermal conductivity was evaluated with two different principles: contact and radiant heat transfer, according to JIS R 2618 and EN ISO 6942, respectively. Solar measurements were performed with a Shimadzu UV-3600 Plus spectrophotometer. The graphene coating improved the thermal stability of the polyester fabrics. The solar absorbance value increased by 80% compared to reference fabrics, and reached approximately 90%. One of the important results was that the thermal conductivity coefficient increased by 87% and 262% for the two coating thicknesses, respectively.Publication Effect of fixation conditions on yellowing behavior of cellulose powder-coated fabrics(Sage Publications Ltd, 2019-02-26) Yıldırım, Kenan; Manaşoğlu, Gizem; MANASOĞLU, GİZEM; Kanık, Mehmet; KANIK, MEHMET; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği.; 0000-0002-1504-8694; IZE-4329-2023; AAI-8441-2021; JTS-3559-2023In this study, the yellowing behavior of cellulose powders, which is applied to pretreated polyester woven fabrics with concentrations of 100g/kg by knife coating technique, was investigated. After drying process, coated fabrics were cured at different conditions to determine the effects of the curing temperature and time on yellowing behaviors. The yellowness-whiteness of coated fabrics was measured with a spectrophotometer according to ASTM E313. As the curing temperature and time increase, yellowing effect was more observable. However, the effect of temperature increase is found to be more significant than the increase in curing duration in terms of more observed yellowness. In order to investigate the reason of yellowing, cellulose powder samples were heated in drying oven at three different heating temperatures (130 degrees C, 150 degrees C, and 170 degrees C) for three different heating periods (3, 5, and 7 min). Then, thermal gravimetric analysis and Fourier transform infrared spectroscopy analysis of powder samples were performed for each temperature-period combinations. No ring-opening reaction on the cellulose group was found in the Fourier transform infrared spectroscopy analysis. However, the changes in the spectra can be attributed to the chain breakage in the cellulose macromolecules as well as water loss from the molecular structure during the heating process. Microscopic and scanning electron microscopic analysis was carried out to see any surface change on the fiber and coated fabric. There was no detectable surface change on the fiber and coated fabric surface, apart from a color change on the fabric surface.Publication Influence of flock coating on the thermophysiological comfort properties of woven cotton fabric(Taylor & Francis Ltd, 2022-02-18) Kesimci, Mahmut Oğuz; Demirel, Hilal; Özdemir, Özcan; Kanık, Mehmet; KESİMCİ, MAHMUT OĞUZ; Demirel, Hilal; ÖZDEMİR, ÖZCAN; KANIK, MEHMET; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü.; 0000-0002-4748-8395; 0000-0003-0560-1510; 0000-0003-2494-6485; 0000-0003-2317-7282; JTS-3559-2023; B-5851-2017; CNJ-0063-2022; HVO-2051-2023In flock coating, the fabric surface is coated with an adhesive, and flock fibers of a certain length and fineness are impinged and embedded on the adhesive. Embedded fibers form a pile structure on the surface, causing the process to find a wide range of applications. However, there has been no study on the comfort properties of the flock coated fabrics due to the inevitable decrease of the fabric permeability after adhesive coating. This study evaluates the flock fiber physical properties, adhesive coating ratio, and flocking duration on the comfort properties of flock-coated fabrics. Three different coating ratios, two different flocking durations, and four different flock fibers with different fineness and length were studied. Fabric samples were produced by electrostatic flock coating of the woven cotton base fabric. In addition to the experimental study, a mathematical model has been set up to predict the flock-coated fabric thermal resistance. Short (0.4 mm) and long (1.0 mm) flock fibers have assured 82% and 204% higher thermal resistance, respectively, compared to the base fabric thermal resistance of 7.37 (10(-3) m(2) K/W). The thermal resistance mathematical model results have been found to agree with the actual values with a correlation coefficient of 0.95. Compared to the base fabric, long flock fiber has provided a 249% increase in thermal resistance, with at most a 20% fabric mass increment and 24% relative water vapor permeability decrease. The findings indicate that flock coating can be utilized in cold-weather clothing.Publication Investigation of thermal and solar properties of aerogel powder coated textiles(Kaunas Univ Tech, 2023-01-01) Köken, Atike; Kanık, Mehmet; KANIK, MEHMET; Köken, Atike; Bursa Uludağ Üniversitesi/Tekstil Mühendisliği Bölümü; 0000-0002-1781-5025; JTS-3559-2023; JFG-5231-2023Aerogels, the lowest-density solids in the world, have very effective thermal insulation properties with their extremely high surface area and porous structure. Recently, there has been an increasing interest in using aerogels in the textile industry, especially to obtain functional and technical textiles. In this study, thermal and solar properties of polyester fabrics coated at different concentrations (1 %, 2 %, and 4 %) of aerogels with different particle sizes (similar to 8 mu m, 0 - 80 mu m, 0 - 0.5 mm) were investigated. It was observed that the aerogel particle size and concentration had a significant effect on the thermal and solar properties, and the lowest thermal conductivity coefficient and thermal resistance values (0.036 W/mK and 14.33 m(2) K/W, respectively) appeared at the largest particle size and maximum concentration. In contrast, the solar reflectance values of the coated samples decrease up to 62 % with increasing aerogel particle size. In a conclusion, the coating method with aerogel powders could be applied to improve the thermal insulation and solar protection properties of mainly curtains, tents, tarpaulins, and sportswear fabrics.Publication Investigation of water absorption performance of polyester-woven fabrics coated with super absorbent polymer(Wiley, 2023-10-05) Ozan, Kadir; Kanık, Mehmet; Özer, Şude Şeyda; Ozan, Kadir; KANIK, MEHMET; Özer, Şude Şeyda; Bursa Uludağ Üniversitesi/Fen Bilimleri Enstitüsü.; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü.; 0009-0007-2682-6184; 0000-0002-2647-1981; JTS-3559-2023; ADU-2690-2022; JOX-9611-2023Superabsorbent polymers (SAPs) constitute a special class of polymers widely used in various fields, especially in the hygiene and healthcare sectors. This study investigates the feasibility of achieving high water absorption capacity surfaces by coating powdered SAP using conventional coating methods onto textile surfaces. For this purpose, water-based coating pastes containing micronized SAP powder based on acrylamide/acrylic acid copolymer were coated onto polyester (PES)-woven fabric surfaces using a knife-over-roll coating technique. As the working parameters, the pH value of the coating paste, the coating thickness (the distance between the cloth and the knife), the drying/fixing temperature and time, the SAP concentration, and the water absorption capacity according to time were investigated. The results were evaluated by applying the coating thickness, the amount of coating material transferred to the fabric on the SAP-coated samples, water absorbing capacity, and centrifugal water retention tests. The obtained results have demonstrated that textile surfaces with high water absorption capacity (on average 200%-350%) can be achieved by coating hydrophobic fabric surfaces, such as PES, with SAP under suitable conditions.Publication Peel resistance and stiffness of woven fabric with fusible interlinings(Inst Natl Cercetare-dezvoltare Textile Pielarie-bucuresti, 2019-01-01) Gurarda, Ayca; GÜRARDA, AYÇA; Kanık, Mehmet; KANIK, MEHMET; Çalışkan, Naime; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi.; JTS-3559-2023Interlining is a layer of fabric placed between the garment fabrics to form and enhance the stiffness of the garment. The fusible interlining can be bonded to the fabric at a specific temperature, time and pressure. These parameters are very important for the peel resistance and stiffness of the fabric with fusible interlining.In this study, cotton woven face fabric and three different fusible interlinings(plain, twill and nonwoven fusible interlining) were chosen as experimental samples. Different fusing temperatures between 130 degrees C and 170 degrees C and different fusing times (5-10 and 15 sec) selected for fusing of the interlinings to the fabric. The purpose of this study is to investigate the effect of fusing temperature and time on peel resistance and stiffness of fabric with fusible interlinings. Results indicated that the stiffness of the fabric withcotton plain fusible interlining increased with increase fusing temperature and fusing time. Results indicated that the stiffness of the fabric withpolyester twill fusible interlining increased with increase fusing temperature and decrease fusing time. Results indicated that the stiffness of the fabric with polyamide nonwoven fusible interlining increased with increase fusing temperature until 140 degrees C and increase fusing time until 10 sec. Results indicated that the peel resistance between the cotton plain and polyester twill fusible interlining andface fabric increased with increase fusing temperature and fusing time.Publication Research on the method for controlling the liquid absorptivity behavior of polyester textile materials(Sage Publications Inc, 2022-05-01) Akgün, Mine; KANIK, MEHMET; AKGÜN, MİNE; Kanık, Mehmet; Seçmen, Sude; Macit, Miray; Gülşen, Esma; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü.; JTS-3559-2023Besides the advantages of polyester materials, such as ease of production, usage, and maintenance, the hydrophobic properties could cause disadvantages. Applying hydrophilic finishing to the polyester product, its liquid transmission properties could be improved, and better comfort provided to the user. This study aimed to investigate the liquid absorptivity properties (vertical wicking, water vapor permeability, and drop test) of the fabric given hydrophilic properties by applying a partial hydrophilic process on a 100% polyester textile surface. It aimed to transfer the hydrophilic finishing agent to the polyester product using a printing method other than the padding method. In the printing application, 100% open, striped (50% open - 50% closed), continued honeycomb (65% open - 35% closed), and non-continued honeycomb (35% open - 65% closed) pattern screens were used. The liquid transmission properties of fabrics were evaluated by changing the ratio of the hydrophilic treatment applied to the fabric surface via with the printing method. In terms of the applicability of the printing method as an alternative to the impregnation method in order to achieve decreased chemical consumption, it was aimed to investigate whether the method of giving hydrophilic features by the printing method could create an alternative to the padding method. The results showed that the liquid transmission properties of fabrics could be controlled and improved by the printing method depending on the proportions of the hydrophilic and hydrophobic surface areas. In addition, it was observed that the liquid transmission properties of the fabrics vary depending on whether these areas are continued or non-continued.Publication The effect of graphene coating on surface roughness and friction properties of polyester fabrics(Kaunas Univ Tech, 2021-01-01) Manasoglu, Gizem; Celen, Rumeysa; Akgün, Mine; Kanik, Mehmet; Manasoglu, Gizem; MANASOĞLU, GİZEM; Celen, Rumeysa; ÇELEN, RUMEYSA; Akgün, Mine; AKGÜN, MİNE; Kanik, Mehmet; KANIK, MEHMET; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü.; 0000-0002-1504-8694; 0000-0002-2972-8295; JTS-3559-2023; JHT-0825-2023In this article, the surface roughness and friction coefficient values of graphene coated fabrics were examined. Fabrics were coated with three different graphene concentrations (5 %, 10 % and 20 %) with the knife-over-roll principle. The surface roughness of samples was measured by Accretech Surfcom 130A. Various surface roughness parameters of the coated fabrics were evaluated. Static and kinetic friction coefficients of coated fabrics were measured by Labthink Param MXD-02 friction tester using the standard wool abrasive cloth. It was observed that the coating concentration affected the frictional and roughness properties of fabrics. Experimental results showed that fabric surface roughness and friction coefficient values decreased significantly, especially at 20 % concentration. It was concluded that the coated fabrics produced could be used in applications such as anti-wear clothing.Publication Usage of barium titanate in fabric coating and investigation of some properties(Korean Fiber Soc, 2021-03-03) Celen, Rumeysa; Manasoğlu, Gizem; Ulcay, Yusuf; Kanık, Mehmet; ÇELEN, RUMEYSA; MANASOĞLU, GİZEM; ULCAY, YUSUF; KANIK, MEHMET; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Tekstil Mühendisliği Bölümü; 0000-0002-2972-8295; 0000-0002-1504-8694; JTS-3559-2023; HRC-4302-2023; KGU-5587-2024; GHA-2068-2022In this study, nano-sized barium titanate powder was applied for the first time to polyester woven fabrics by knife coating at three different concentration rates. Some physical (thickness, mass per unit area, bending rigidity, air permeability and tear strength) properties, electromagnetic shielding efficiency and solar (transmittance, reflectance) properties of samples were presented. The samples were also characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Electromagnetic shielding effectiveness of the fabrics was determined according to the ASTM D4935-10 standard by using a coaxial transmission line measurement technique in the frequency range of 15-3000 MHz. The solar properties were measured according to EN14500 standard using a UV/VIS/NIR spectrophotometer and results were calculated according to EN 410 standard. Results revealed that the electromagnetic shielding effectiveness and solar reflectance property of samples improved with increasing barium titanate concentration.