Person:
AVCI, ATAKAN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

AVCI

First Name

ATAKAN

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Effects of separation space diameter on the performance of a novel reverse flow cyclone
    (Taylor, 2019-10-13) Sakin, Ali; Karagöz, İrfan; Avcı, Atakan; KARAGÖZ, İRFAN; AVCI, ATAKAN; Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü; 0000-0002-7442-2746; AAB-9388-2020
    A numerical study was carried out to investigate the effect of separation space diameter on the performance of a novel reverse flow tangential inlet cyclone design by using the Eulerian-Lagrangian approach. The design of this cyclone is based on the idea of increasing vortex length and decreasing pressure drop compared with traditional cyclones. This novel cyclone differs from the traditional cyclones with separation space and vortex limiter instead of the conical part. A qualitative numerical study was performed to analyze the effect of separation space diameter on the cyclone performance at different flow rates by evaluating velocity profile, pressure drop, fractional and overall efficiencies. The results show that the collection efficiency of smaller particles increases while pressure drop decreases significantly with the increase in separation space diameter for D-1/D < 0.5.
  • Publication
    Experimental analysis of the volumetric and thermal efficiency performance of a novel direct piezo-acting cvvt mechanism
    (Taylor & Francis Inc, 2023-06-22) Sürmen, Ali; SÜRMEN, ALİ; Karamangil, M., I; KARAMANGİL, MEHMET İHSAN; Avcı, A.; AVCI, ATAKAN; Dirim, B.; DİRİM, MEHMET SABRİ; Işıklı, F.; IŞIKLI, FIRAT; Tekin, M.; TEKİN, MERVE; Türköz, N.; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü.; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü.; Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.; 0000-0003-1662-5649; 0000-0003-2831-3175; 0000-0002-9009-8069; AAH-8619-2019; AAG-8571-2021; JCN-8081-2023; HNS-2001-2023
    In this study, a specifically designed direct-acting continuously variable valve timing mechanism was used to determine speed optimised valve timings for best volumetric efficiency of an engine. This mechanism basically consists of a piezo stack and a hydraulic magnifier integrated into it. To avoid effects of excessive vibrations on the piezo-stack, the engine was operated in a non-combustion mode. An electric motor was used to power the engine. Some system limitations of the hydraulic magnifier and the piezo-stack were the main challenges to a non-stop operation. A valve lift of approximately 4 mm, obtained with maximum applicable voltage of 600V to the piezo-stack, was referred to for comparison instead of the 7.6 mm original value. Tests were conducted for 30 inlet valve timing combinations at four different engine speeds from 1500 to 3000 rpm with 500 rpm increments. Timing pairs for the best VE were determined. They yielded 11.5% to 19.4% better volumetric efficiencies at 4mm lift than those obtained with the original valve timing of the cold engine. We also predicted 5-11.5% overall efficiency improvement, depending on engine type and operating conditions. Despite some practical challenges, better VE values have been obtained for a specific engine at varied speeds.