Publication:
Development and validation of a simple risk scoring system for a COVİD-19 diagnostic prediction model

dc.contributor.authorGüçlü, Özge Aydın
dc.contributor.authorUrsavaş, Ahmet
dc.contributor.authorOcakoğlu, Gokhan
dc.contributor.authorDemirdogen, Ezgi
dc.contributor.authorÖztürk, Nilufer Aylin Acet
dc.contributor.authorTopçu, Dilara Ömer
dc.contributor.authorTerzi, Orkun Eray
dc.contributor.authorOnal, Uğur
dc.contributor.authorDilektaşlı, Aslı Görek
dc.contributor.authorSağlık, İmran
dc.contributor.authorCoşkun, Funda
dc.contributor.authorEdiger, Dane
dc.contributor.authorUzaslan, Esra
dc.contributor.authorAkalIn, Halis
dc.contributor.authorKaradağ, Mehmet
dc.contributor.buuauthorAYDIN GÜÇLÜ, ÖZGE
dc.contributor.buuauthorURSAVAŞ, AHMET
dc.contributor.buuauthorOCAKOĞLU, GÖKHAN
dc.contributor.buuauthorDEMİRDÖĞEN, EZGİ
dc.contributor.buuauthorACET ÖZTÜRK, NİLÜFER AYLİN
dc.contributor.buuauthorÖMER TOPÇU, DİLARA
dc.contributor.buuauthorTERZİ, ORKUN ERAY
dc.contributor.buuauthorÖNAL, UĞUR
dc.contributor.buuauthorGÖREK DİLEKTAŞLI, ASLI
dc.contributor.buuauthorSAĞLIK, İMRAN
dc.contributor.buuauthorCOŞKUN, NECMİYE FUNDA
dc.contributor.buuauthorEDİGER, DANE
dc.contributor.buuauthorUZASLAN, AYŞE ESRA
dc.contributor.buuauthorAkalIn, Halis
dc.contributor.buuauthorKARADAĞ, MEHMET
dc.contributor.departmentUludağ Üniversitesi/Tıp Fakültesi/Göğüs Hastalıkları Anabilim Dalı
dc.contributor.departmentUludağ Üniversitesi/Tıp Fakültesi/Biyoistatistik Anabilim Dalı
dc.contributor.departmentUludağ Üniversitesi/Tıp Fakültesi/Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Anabilim Dalı
dc.contributor.orcid0000-0003-1005-3205
dc.contributor.orcid0000-0002-1114-6051
dc.contributor.orcid0000-0002-7400-9089
dc.contributor.orcid0000-0002-6375-1472
dc.contributor.orcid0000-0001-7099-9647
dc.contributor.orcid0000-0002-2954-4293
dc.contributor.orcid0000-0001-7530-1279
dc.contributor.orcid0000-0002-9027-1132
dc.contributor.researcheridAAH-5180-2021
dc.contributor.researcheridA-4970-2019
dc.contributor.researcheridAAG-8744-2021
dc.contributor.researcheridAAI-3169-2021
dc.contributor.researcheridJCO-3678-2023
dc.contributor.researcheridJPK-7012-2023
dc.date.accessioned2024-11-06T11:32:17Z
dc.date.available2024-11-06T11:32:17Z
dc.date.issued2023-01-01
dc.description.abstractIntroduction: In a resource-constrained situation, a clinical risk stratification system can assist in identifying individuals who are at higher risk and should be tested for COVID-19. This study aims to find a predictive scoring model to estimate the COVID-19 diagnosis.Materials and Methods: Patients who applied to the emergency pandemic clinic between April 2020 and March 2021 were enrolled in this retrospective study. At admission, demographic characteristics, symptoms, comorbid diseases, chest computed tomography (CT), and laboratory findings were all recorded. Development and validation datasets were created. The scoring system was performed using the coefficients of the odds ratios obtained from the multivariable logistic regression analysis.Results: Among 1187 patients admitted to the hospital, the median age was 58 years old (22-96), and 52.7% were male. In a multivariable analysis, typical radiological findings (OR= 8.47, CI= 5.48-13.10, p< 0.001) and dyspnea (OR= 2.85, CI= 1.71-4.74, p< 0.001) were found to be the two important risk factors for COVID-19 diagnosis, followed by myalgia (OR= 1.80, CI= 1.082.99, p= 0.023), cough (OR= 1.65, CI= 1.16-2.26, p= 0.006) and fatigue symptoms (OR= 1.57, CI= 1.06-2.30, p= 0.023). In our scoring system, dyspnea was scored as 2 points, cough as 1 point, fatigue as 1 point, myalgia as 1 point, and typical radiological findings were scored as 5 points. This scoring system had a sensitivity of 71% and a specificity of 76.3% for a cut-off value of >2, with a total score of 10 (p< 0.001).Conclusion: The predictive scoring system could accurately predict the diagnosis of COVID-19 infection, which gave clinicians a theoretical basis for devising immediate treatment options. An evaluation of the predictive
dc.identifier.doi10.5578/tt.20239601
dc.identifier.endpage334
dc.identifier.issn0494-1373
dc.identifier.issue4
dc.identifier.startpage325
dc.identifier.urihttps://doi.org/10.5578/tt.20239601
dc.identifier.urihttps://www.tuberktoraks.org/managete/fu_folder/2023-04/2023-71-4-325-334.pdf
dc.identifier.urihttps://hdl.handle.net/11452/47487
dc.identifier.volume71
dc.identifier.wos001166911300001
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherTüberküloz ve Toraks
dc.relation.journalTüberküloz ve Toraks
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCovid-19
dc.subjectScoring system
dc.subjectPrediction model
dc.subjectDiagnosis
dc.subjectScience & technology
dc.subjectLife sciences & biomedicine
dc.subjectRespiratory system
dc.titleDevelopment and validation of a simple risk scoring system for a COVİD-19 diagnostic prediction model
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicationb517ff8d-349f-49cb-b27a-7be17ab074b0
relation.isAuthorOfPublication09f93f96-5325-45e7-bf28-4ad8e8c46d6d
relation.isAuthorOfPublication8ff963e8-284c-49e2-99b9-a46777690e8c
relation.isAuthorOfPublication2445e2a7-e9d2-4c20-b3a7-84945617a6a0
relation.isAuthorOfPublication1fbb03ab-16d7-4784-86fd-239b055bc24f
relation.isAuthorOfPublication741a6bcc-d000-4866-8e9d-48d8bd365555
relation.isAuthorOfPublicationeff47579-f032-4751-9288-d091906693f6
relation.isAuthorOfPublication73351d49-e518-4e6a-8f69-c922f8f24611
relation.isAuthorOfPublicationa71bfd48-897b-4983-87e7-11edc5ed438a
relation.isAuthorOfPublicationaab7d5dd-72a4-4f3a-a677-1fdf3e13cadc
relation.isAuthorOfPublication061153e8-bbd9-4c2a-97f6-dc51171a1143
relation.isAuthorOfPublicationea25ddfe-3514-411c-8862-e891b0cd651b
relation.isAuthorOfPublication80df98cb-7a8e-4a6c-86c1-65dfe8f4e962
relation.isAuthorOfPublicationd7720460-3eae-413a-9ffc-16d206d8b896
relation.isAuthorOfPublication.latestForDiscoveryb517ff8d-349f-49cb-b27a-7be17ab074b0

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Güçlü_vd_2023.pdf
Size:
506.6 KB
Format:
Adobe Portable Document Format

Collections