Browsing by Author "David, C."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Publication Charged particle timing at sub-25 picosecond precision: The picosec detection concept(Elsevier, 2019-08-21) Iguaz, F. J.; Bortfeldt, J.; Brunbauer, F. M.; David, C.; Desforge, D.; Fanourakis, G.; Franchi, J.; Gallinaro, M.; Garcia, F.; Giomataris, I; Gonzalez-Diaz, D.; Gustaysson, T.; Guyot, C.; Kebbiri, M.; Legou, P.; Liu, J.; Lupberger, M.; Maillard, O.; Manthos, I; Mueller, H.; Niaouris, V; Oliveri, E.; Papaevangelou, T.; Paraschou, K.; Pomorskif, M.; Qi, B.; Resnati, F.; Ropelewski, L.; Sampsonidis, D.; Schneider, T.; Schwemling, P.; Sohl, L.; van Stenis, M.; Thuiner, P.; Tsipolitis, Y.; Tzamarias, S. E.; Wang, X.; White, S.; Zhang, Z.; Zhou, Y.; Veenhof, Rob; Bursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Fizik Bölümü.The PICOSEC detection concept consists in a "two-stage" Micromegas detector coupled to a Cherenkov radiator and equipped with a photocathode. A proof of concept has already been tested: a single-photoelectron response of 76 ps has been measured with a femtosecond UV laser at CEA/IRAMIS, while a time resolution of 24 ps with a mean yield of 10.4 photoelectrons has been measured for 150 GeV muons at the CERN SPS H4 secondary line. This work will present the main results of this prototype and the performance of the different detector configurations tested in 2016-2018 beam campaigns: readouts (bulk, resistive, multipad) and photocathodes (metallic+CsI, pure metallic, diamond). Finally, the prospects for building a demonstrator based on PICOSEC detection concept for future experiments will be discussed. In particular, the scaling strategies for a large area coverage with a multichannel readout plane, the R&D on solid converters for building a robust photocathode and the different resistive configurations for a robust readout.Publication Precise timing with the picosec-micromegas detector(Soc Italiana Fisica, 2020-01-01) Sampsonidis, D.; Bortfeldt, J.; Brunbauer, F.; David, C.; Desforge, D.; Fanourakis, G.; Franchi, J.; Gallinaro, M.; Garcia, F.; Giomataris, I; Gustavsson, T.; Guyot, C.; Iguaz, F. J.; Kebbiri, M.; Kordas, K.; Lampoudis, C.; Legou, P.; Liu, J.; Lupberger, M.; Maillard, O.; Maniatis, V; Manthos, I; Muller, H.; Oliveri, E.; Papaevangelou, T.; Paraschou, K.; Pomorski, M.; Resnati, F.; Ropelewski, L.; Schneider, T.; Schwemling, P.; Scorsone, E.; Sohl, L.; Van Stenis, M.; Thuiner, P.; Tsipolitis, Y.; Tzamarias, S. E.; Wang, X.; White, S.; Zhang, Z.; Zhou, Y.; Veenhof, R.; Bursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Fizik Bölümü.; GJK-8031-2022This work presents the concept of the PICOSEC-Micromegas detector to achieve a time resolution below 30 ps. PICOSEC consists of a two-stage Micromegas detector coupled to a Cherenkov radiator and equipped with a photo-cathode. The results from single-channel prototypes as well as the understanding of the detector in terms of detailed simulations and preliminary results from a multichannel prototype are presented.Publication Progress on the PICOSEC-micromegas detector development: Towards a precise timing, radiation hard, large-scale particle detector with segmented readout(Elsevier, 2020-04-01) Kordas, K.; Bortfeldt, J.; Brunbauer, F.; David, C.; Desforge, D.; Fanourakis, G.; Franchi, J.; Gallinaro, M.; Garcia, F.; Giomataris, I.; Gonzalez-Diaz, D.; Gustavsson, T.; Guyot, C.; Iguaz, F. J.; Kebbiri, M.; Legou, P.; Liu, J.; Lupberger, M.; Maillard, O.; Maniatis, I.; Manthos, I.; Mueller, H.; Niaouris, V.; Oliveri, E.; Papaevangelou, T.; Paraschou, K.; Pomorski, M.; Qi, B.; Resnati, F.; Ropelewski, L.; Sampsonidis, D.; Schneider, T.; Schwemling, P.; Sohl, L.; van Stenis, M.; Thuiner, P.; Tsipolitis, Y.; Tzamarias, S. E.; Veenhof, R.; Wang, X.; White, S.; Zhang, Z.; Zhou, Y.; Veenhof, Rob; Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü.; GJK-8031-2022This contribution describes the PICOSEC-Micromegas detector which achieves a time resolution below 25 ps. In this device the passage of a charged particle produces Cherenkov photons in a radiator, which then generate electrons in a photocathode and these photoelectrons enter a two-stage Micromegas with a reduced drift region and a typical anode region. The results from single-channel prototypes (demonstrating a time resolution of 24 ps for minimum ionizing particles, and 76 ps for single photoelectrons), the understanding of the detector in terms of detailed simulations and a phenomenological model, the issues of robustness and how they are tackled, and preliminary results from a multi-channel prototype are presented (demonstrating that a timing resolution similar to that of the single-channel device is feasible for all points across the area covered by a multi-channel device).Publication Timing performance of a micro-channel-plate photomultiplier tube(Elsevier, 2020-04-21) Bortfeldt, J.; Brunbauer, F.; David, C.; Desforge, D.; Fanourakis, G.; Gallinaro, M.; Garcia, F.; Giomataris, I; Gustavsson, T.; Guyot, C.; Iguaz, F. J.; Kebbiri, M.; Kordas, K.; Legou, P.; Liu, J.; Lupberger, M.; Manthos, I; Mueller, H.; Niaouris, V; Oliveri, E.; Papaevangelou, T.; Paraschou, K.; Pomorski, M.; Resnati, F.; Ropelewski, L.; Sampsonidis, D.; Schneider, T.; Schwemling, P.; Scorsone, E.; Sohl, L.; van Stenis, M.; Thuiner, P.; Tsipolitis, Y.; Tzamarias, S. E.; Veenhof, R.; Wang, X.; White, S.; Zhang, Z.; Zhou, Y.; Veenhof, Rob; Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü; GJK-8031-2022The spatial dependence of the timing performance of the R3809U-50 Micro-Channel-Plate PMT (MCP-PMT) by Hamamatsu was studied in high energy muon beams. Particle position information is provided by a GEM tracker telescope, while timing is measured relative to a second MCP-PMT, identical in construction. In the inner part of the circular active area (radius r<5.5 mm) the time resolution of the two MCP-PMTS combined is better than 10 ps. The signal amplitude decreases in the outer region due to less light reaching the photocathode, resulting in a worse time resolution. The observed radial dependence is in quantitative agreement with a dedicated simulation. With this characterization, the suitability of MCP-PMTS as t(0) reference detectors has been validated.Publication Timing performance of a multi-pad picosec-micromegas detector prototype(Elsevier, 2021-01-29) Aune, S.; Bortfeldt, J.; Brunbauer, F.; David, C.; Desforge, D.; Fanourakis, G.; Gallinaro, M.; Garcia, F.; Giomataris, I; Gustavsson, T.; Iguaz, F. J.; Kebbiri, M.; Kordas, K.; Lampoudis, C.; Legou, P.; Lisowska, M.; Liu, J.; Lupberger, M.; Maillard, O.; Maniatis, I; Manthos, I; Mueller, H.; Oliveri, E.; Papaevangelou, T.; Paraschou, K.; Pomorskik, M.; Qi, B.; Resnati, F.; Ropelewski, L.; Sampsonidis, D.; Scharenberg, L.; Schneider, T.; Sohl, L.; van Stenis, M.; Tsiamis, A.; Tsipolitis, Y.; Tzamarias, S. E.; Utrobicic, A.; Wang, X.; White, S.; Zhang, Z.; Zhou, Y.; Veenhof, R.; Bursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Fizik Bölümü.The multi-pad PICOSEC-Micromegas is an improved detector prototype with a segmented anode, consisting of 19 hexagonal pads. Detailed studies are performed with data collected in a muon beam over four representative pads. We demonstrate that such a device, scalable to a larger area, provides excellent time resolution and detection efficiency. As expected from earlier single-cell device studies, we measure a time resolution of approximately 25 picoseconds for charged particles hitting near the anode pad centres, and up to 30 picoseconds at the pad edges. Here, we study in detail the effect of drift gap thickness non-uniformity on the timing performance and evaluate impact position based corrections to obtain a uniform timing response over the full detector coverage.