Kaygı. Uludağ Üniversitesi Fen-Edebiyat Fakültesi Felsefe Dergisi
Permanent URI for this communityhttps://hdl.handle.net/11452/5060
Browse
Browsing by Subject "A posteriori"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A posteriori zorunlu doğruluklar var mıdır?(Bursa Uludağ Üniversitesi, 2022-03-25) Çebi, Cengiz; Fen Edebiyat Fakültesi; Felsefe Bölümü; 0000-0001-5720-6315Bilgi felsefesinde önermelerin zorunlu doğrulukları Kant'tan itibaren onların a priori bir zemine dayanmalarına bağlanmıştır. Diğer bir deyişle bu görüşe göre bir önerme zorunlu olarak doğruysa bu onun -özünde- a priori bir önerme olmasıyla ilgilidir. A posteriori bir önerme ise zorunlu değil, ancak olumsal bir doğruluğa sahip olabilir. Kısaca söyleyecek olursak a priori önermelerin doğruluğu zorunlu, a posteriori önermelerin doğruluğu ise olumsaldır. Dil felsefesinde oldukça etkili bir dil kuramı öne sürmüş olan Kripke ise Analitik Felsefe geleneğinde uzun bir süre neredeyse tartışmasız benimsenmiş olan bu a priorilik-zorunluluk ilişkisine önemli bir eleştiri getirmiş, bu ilişkinin bağlayıcı olmayan yanlış bir ilişki olduğunu öne sürmüştür. Öyle ki ona göre önermeler a priori oldukları halde olumsal, a posteriori oldukları halde de zorunlu olabilirler. Bu yazıda bu savın ilk bölümü bir kenara bırakılacak, a posteriori önermelerin ise neden zorunlu olamayacakları gösterilmeye çalışılacaktır.Item Immanuel Kant’s philosophy of mathematics in terms of his theory of space and time(Uludağ Üniversitesi, 2012) Guner, NecdetAt the beginning of the modern age, mathematics had a great importance for the study of Nature. Galileo claimed that ‘the book of nature was written in a kind of mathematical code, and that if we could only crack that code, we could uncover her ultimate secrets’. But, how can mathematics, consisting of necessary tautological truths that are infallible and non-informative, be regarded as the language of natural sciences, while the knowledge of natural sciences is informative, empirical and fallible? Or, is there another alternative: as Hume claimed, modern sciences only depend on empirical data deriving from our perceptions, rather than having the necessity of mathematics. Many philosophers have tried to find an adequate answer for the problem of the relationship between mathematical necessity and contingent perceptions, but the difficulty remained unsolved until Kant’s construction of his original philosophy of the nature as well as the limits of human reason. The main purpose of this study is to show how Kant overcomes this difficulty by making use of the examples of Euclidean geometry and of arithmetic: there are synthetic a priori (a priori, universal, necessary, but at the same time informative) judgments, and indeed mathematical propositions are of this kind.