Publication:
A new approach for battery thermal management system design based on grey relational analysis and latin hypercube sampling

dc.contributor.buuauthorBulut, Emre
dc.contributor.buuauthorBULUT, EMRE
dc.contributor.buuauthorSevilgen, Gökhan
dc.contributor.buuauthorSEVİLGEN, GÖKHAN
dc.contributor.buuauthorÖztürk, Ferruh
dc.contributor.buuauthorÖZTÜRK, FERRUH
dc.contributor.buuauthorAlbak, Emre İsa
dc.contributor.buuauthorALBAK, EMRE İSA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentOtomotiv Mühendisliği Bölümü
dc.contributor.orcid0000-0001-9159-5000
dc.contributor.orcid0000-0001-9215-0775
dc.contributor.orcid0000-0002-7746-2014
dc.contributor.researcheridABG-3444-2020
dc.contributor.researcheridAAG-8907-2021
dc.contributor.researcheridI-9483-2017
dc.date.accessioned2024-10-17T12:04:39Z
dc.date.available2024-10-17T12:04:39Z
dc.date.issued2021-09-16
dc.description.abstractA liquid cooling system is an effective type of battery cooling system on which many studies are presented nowadays. In this research, the effects of the mass flow rate and number of channels on the maximum temperature and pressure drop are investigated for multi-channel serpentine cooling plates. A new approach with LHS and GRA is used to obtain the optimum ranges of design parameters to minimize the pressure drop, maximum temperature and to maximize the convective heat transfer coefficient. In this study, the values of the parameters for the numerical modeling are obtained by the experiments. The width and height of the serpentine channel and mass flow rate are chosen as input parameters and the pressure drop, convective heat transfer coefficient and maximum temperature are selected as output parameters. Comparing with the base design, the optimized design provided up to 40.3% decrease in the pressure drop with a penalty of 11.3% decrease in the convective heat transfer coefficient with a slight decrease in the maximum temperature. The proposed approach can be used to design better cooling plates to keep the batteries in safe temperature ranges and to reduce the power consumption by optimizing the pressure drop and maximum temperature values.
dc.identifier.doi10.1016/j.csite.2021.101452
dc.identifier.issn2214-157X
dc.identifier.urihttps://doi.org/10.1016/j.csite.2021.101452
dc.identifier.urihttps://hdl.handle.net/11452/46662
dc.identifier.volume28
dc.identifier.wos000700529100093
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier
dc.relation.journalCase Studies In Thermal Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectLithium-ion battery
dc.subjectOrthogonal experimental-design
dc.subjectLiquid cooling plate
dc.subjectHeat-exchanger
dc.subjectOptimization
dc.subjectPerformance
dc.subjectPower
dc.subjectFlow
dc.subjectLatin hypercube sampling
dc.subjectGrey relational analysis
dc.subjectBattery thermal modeling
dc.subjectLiquid cooling
dc.subjectCooling plate
dc.subjectSerpentine channel
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectThermodynamics
dc.titleA new approach for battery thermal management system design based on grey relational analysis and latin hypercube sampling
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Otomotiv Mühendisliği Bölümü
local.contributor.departmentGemlik Asım Kocabıyık Meslek Yüksekokulu
relation.isAuthorOfPublicationf40336d8-7dee-4bc0-b37a-c7f07578c139
relation.isAuthorOfPublication975d5454-a37e-43a5-a932-2de51b928419
relation.isAuthorOfPublication407521cf-c5bd-4b05-afca-6412ef47700b
relation.isAuthorOfPublicationd966c82c-3610-4ddf-9d0a-af656d61472a
relation.isAuthorOfPublication.latestForDiscoveryf40336d8-7dee-4bc0-b37a-c7f07578c139

Files