Publication:
Determination of the effects of silage type, silage consumption, birth type and birth weight on fattening final live weight in kivircik lambs with MARS and bagging MARS algorithms

dc.contributor.authorŞengül, Ömer
dc.contributor.authorÇelik, Şenol
dc.contributor.authorİbrahim, A. K.
dc.contributor.buuauthorŞENGÜL, ÖMER
dc.contributor.buuauthorİbrahim, A. K.
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentZootekni Bölümü
dc.contributor.researcheridAAH-2915-2021
dc.contributor.researcheridFXX-7276-2022
dc.date.accessioned2024-11-20T12:53:16Z
dc.date.available2024-11-20T12:53:16Z
dc.date.issued2022-05-12
dc.description.abstractThis study was carried out to determine the effect of silage type, silage consumption, birth type (single or twin) and birth weight on live weight at the end of fattening in Kivircik lambs. In the experiment, 40 male Kivircik lambs aged 2.5-3 months were used and the animals were fattened for 56 days. During the fattening period, the lambs fed with 5 different types of silage (100% sunflower silage, 75% sunflower + 25% corn silage, 50% sunflower + 50% corn silage, 25% sunflower + 75% corn silage, 100% corn silage) pure and mixed in different proportions and concentrate feed. Data on fattening results were analyzed with MARS and Bagging MARS algorithms. The main objective of this research is to predict fattening final live weight (FFLW) of lambs using Multivariate Adaptive Regression Splines (MARS) and Bagging MARS algorithms as a nonparametric regression technique. Live weight value was modeled based on factors such as birth type, birth weight, silage type and silage consumption. Correlation coefficient (r), determination coefficient (R2), Adjust R2, Root-meansquare error (RMSE), standard deviation ratio (SD ratio), mean absolute percentage error (MAPE), mean absolute deviation (MAD), and Akaike Information Criteria (AIC) values of MARS algorithm predicting live weight were as follows: 0.9986, 0.997, 0.977, 0.142, 0.052, 0.2389, 0.086 and -88 respectively. Like statistics for Bagging MARS algorithm were 0.754, 0.556, 0.453, 1.8, 0.666, 3.96, 1.47 and 115 respectively. It was observed that MARS and Bagging MARS algorithms have revealed correct results according to goodness of fit statistics. In this study it has been determined that the MARS algorithm gives better results in live weight modeling.
dc.identifier.doi10.9775/kvfd.2022.27149
dc.identifier.endpage389
dc.identifier.issn1300-6045
dc.identifier.issue3
dc.identifier.startpage379
dc.identifier.urihttps://doi.org/10.9775/kvfd.2022.27149
dc.identifier.urihttps://vetdergikafkas.org/uploads/pdf/pdf_KVFD_2909.pdf
dc.identifier.urihttps://hdl.handle.net/11452/48241
dc.identifier.volume28
dc.identifier.wos000799019900001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherKafkas Üniversitesi
dc.relation.journalKafkas Üniversitesi Veteriner Fakültesi Dergisi
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectRegression
dc.subjectGrowth
dc.subjectModels
dc.subjectKivircik lamb
dc.subjectSilage type
dc.subjectBirth weight
dc.subjectBirth type
dc.subjectData mining
dc.subjectVeterinary sciences
dc.titleDetermination of the effects of silage type, silage consumption, birth type and birth weight on fattening final live weight in kivircik lambs with MARS and bagging MARS algorithms
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentZiraat Fakültesi/Zootekni Bölümü
relation.isAuthorOfPublicationfc63e8e4-c693-45ab-a51c-a7ed290bf551
relation.isAuthorOfPublication.latestForDiscoveryfc63e8e4-c693-45ab-a51c-a7ed290bf551

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sengul_vd_2022.pdf
Size:
1.74 MB
Format:
Adobe Portable Document Format