Publication:
A novel hybrid flow direction optimizer-dynamic oppositional based learning algorithm for solving complex constrained mechanical design problems

dc.contributor.authorYıldız, Betül Sultan
dc.contributor.authorPholdee, Nantiwat
dc.contributor.authorMehta, Pranav
dc.contributor.authorSait, Sadiq M.
dc.contributor.authorKumar, Sumit
dc.contributor.authorBureerat, Sujin
dc.contributor.authorYıldız, Ali Rıza
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.researcheridAAL-9234-2020
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2024-10-16T11:32:16Z
dc.date.available2024-10-16T11:32:16Z
dc.date.issued2023-01-27
dc.description.abstractIn this present work, mechanical engineering optimization problems are solved by employing a novel optimizer (HFDO-DOBL) based on a physics-based flow direction optimizer (FDO) and dynamic oppositional-based learning. Five real-world engineering problems, viz. planetary gear train, hydrostatic thrust bearing, robot gripper, rolling bearing, and multiple disc clutch brake, are considered. The computational results obtained by HFDO-DOBL are compared with several newly proposed algorithms. The statistical analysis demonstrates the HFDO-DOBL dominance in finding optimal solutions relatively and competitiveness in solving constraint design optimization problems.
dc.identifier.doi10.1515/mt-2022-0183
dc.identifier.eissn2195-8572
dc.identifier.endpage143
dc.identifier.issn0025-5300
dc.identifier.issue1
dc.identifier.startpage134
dc.identifier.urihttps://doi.org/10.1515/mt-2022-0183
dc.identifier.urihttps://www.degruyter.com/document/doi/10.1515/mt-2022-0183/html
dc.identifier.urihttps://hdl.handle.net/11452/46538
dc.identifier.volume65
dc.identifier.wos000909572000013
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter de Gruyter Gmbh
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectEngineering optimization
dc.subjectCrashworthiness
dc.subjectDynamic oppositional based learning
dc.subjectFlow direction algorithm
dc.subjectHydrostatic thrust bearing
dc.subjectMechanical design
dc.subjectPlanetary gear train
dc.subjectRobot gripper
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMaterials science, characterization & testing
dc.subjectMaterials science
dc.titleA novel hybrid flow direction optimizer-dynamic oppositional based learning algorithm for solving complex constrained mechanical design problems
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMakine Mühendisliği Bölümü
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscoverye544f464-5e4a-4fb5-a77a-957577c981c6

Files