Publication:
A novel hybrid fick's law algorithm-quasi oppositional-based learning algorithm for solving constrained mechanical design problems

dc.contributor.authorMehta, Pranav
dc.contributor.authorSait, Sadiq M.
dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.buuauthorYıldız, Betül Sultan
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakina Mühendisliği Bölümü
dc.contributor.researcheridAAL-9234-2020
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2024-10-16T05:41:34Z
dc.date.available2024-10-16T05:41:34Z
dc.date.issued2023-09-13
dc.description.abstractIn this article, a recently developed physics-based Fick's law optimization algorithm is utilized to solve engineering optimization challenges. The performance of the algorithm is further improved by incorporating quasi-oppositional-based techniques at the programming level. The modified algorithm was applied to optimize the rolling element bearing system, robot gripper, planetary gear system, and hydrostatic thrust bearing, along with shape optimization of the vehicle bracket system. Accordingly, the algorithm realizes promising statistical results compared to the rest of the well-known algorithms. Furthermore, the required number of iterations was comparatively less required to attain the global optimum solution. Moreover, deviations in the results were the least even when other optimizers provided better or more competitive results. This being said that this optimization algorithm can be adopted for a critical and wide range of industrial and real-world challenges optimization.
dc.identifier.doi10.1515/mt-2023-0235
dc.identifier.endpage1825
dc.identifier.issn0025-5300
dc.identifier.issue12
dc.identifier.startpage1817
dc.identifier.urihttps://doi.org/10.1515/mt-2023-0235
dc.identifier.urihttps://hdl.handle.net/11452/46487
dc.identifier.volume65
dc.identifier.wos001081837700001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectOptimization algorithm
dc.subjectEngineering optimization
dc.subjectStructural design
dc.subjectFick's law algorithm
dc.subjectMechanical design
dc.subjectBearing systems
dc.subjectVehicle bearing system
dc.subjectDesign algorithm comparison
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMaterials science, characterization & testing
dc.subjectMaterials science
dc.titleA novel hybrid fick's law algorithm-quasi oppositional-based learning algorithm for solving constrained mechanical design problems
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Bölümü
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Files