Publication: The Diophantine equation (x+1)k + (x+2)k + ... plus (lx)k = yn revisted
dc.contributor.author | Bartoli, Daniele | |
dc.contributor.buuauthor | Soydan, Gökhan | |
dc.contributor.buuauthor | SOYDAN, GÖKHAN | |
dc.contributor.department | Fen Edebiyat Fakültesi | |
dc.contributor.department | Matematik Bölümü | |
dc.contributor.orcid | 0000-0002-5767-1679 | |
dc.contributor.researcherid | M-9459-2017 | |
dc.date.accessioned | 2024-09-16T13:09:47Z | |
dc.date.available | 2024-09-16T13:09:47Z | |
dc.date.issued | 2020-01-01 | |
dc.description.abstract | Let k,l >= 2 be fixed integers, and C be an effectively computable constant depending only on k and l. In this paper, we prove that all solutions of the equation (x + 1)(k) + (x + 2)(k) + ... + (lx)(k) = y(n) in integers x, y,n with x, y >= 1, n >= 2, k not equal 3 and l 1 (mod 2) satisfy max{x, y, n} < C. The case when is even has already been completed by the second author (see [24]). | |
dc.identifier.doi | 10.5486/PMD.2020.8604 | |
dc.identifier.endpage | 120 | |
dc.identifier.issn | 0033-3883 | |
dc.identifier.issue | 1-2 | |
dc.identifier.startpage | 111 | |
dc.identifier.uri | https://doi.org/10.5486/PMD.2020.8604 | |
dc.identifier.uri | https://hdl.handle.net/11452/44790 | |
dc.identifier.volume | 96 | |
dc.identifier.wos | 000529379200007 | |
dc.indexed.wos | WOS.SCI | |
dc.language.iso | en | |
dc.publisher | Univ Debrecen, Inst Mathematics | |
dc.relation.journal | Publicationes Mathematicae Debrecen | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Perfect powers | |
dc.subject | Sums | |
dc.subject | Bernoulli polynomials | |
dc.subject | High degree equations | |
dc.subject | Science & technology | |
dc.subject | Physical sciences | |
dc.subject | Mathematics | |
dc.title | The Diophantine equation (x+1)k + (x+2)k + ... plus (lx)k = yn revisted | |
dc.type | Article | |
dspace.entity.type | Publication | |
local.contributor.department | Fen Edebiyat Fakültesi/Matematik Bölümü | |
relation.isAuthorOfPublication | 356f7af9-3f0f-4c82-8733-d98627634647 | |
relation.isAuthorOfPublication.latestForDiscovery | 356f7af9-3f0f-4c82-8733-d98627634647 |