Publication:
Ergodic capacity estimation with artificial neural networks in noma-based cognitive radio systems

dc.contributor.authorNamdar, Mustafa
dc.contributor.authorGüney, Abdulkadir
dc.contributor.authorBardak, Fatma Kebire
dc.contributor.buuauthorBasgümüş, Arif
dc.contributor.buuauthorBAŞGÜMÜŞ, ARİF
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Bölümü.
dc.contributor.researcheridE-9497-2015
dc.date.accessioned2024-10-16T05:46:21Z
dc.date.available2024-10-16T05:46:21Z
dc.date.issued2023-09-21
dc.description.abstractThe aim of this study is to predict the total ergodic capacity of near users in a cognitive radio (CR)-based non-orthogonal multiple access (NOMA) system model using the proposed artificial neural network (ANN) architecture. The input dataset used in this study was collected from the CR-NOMA system model and consists of the path loss coefficient, power allocation coefficient, signal-to-noise ratio, the distance between the source-relay-destination, and the ratio of the power of the secondary user to that of the primary user. Using a supervised learning method, the output data are trained and input into the ANN to estimate the ergodic capacity of nearby users using test data. The trained system model demonstrates an accuracy of 96.43% for training data, 96.34% for validation data, and 95.66% for test data when estimating the total ergodic capacity.
dc.identifier.doi10.1007/s13369-023-08279-6
dc.identifier.endpage6468
dc.identifier.issn2193-567X
dc.identifier.issue5
dc.identifier.startpage6459
dc.identifier.urihttps://doi.org/10.1007/s13369-023-08279-6
dc.identifier.urihttps://hdl.handle.net/11452/46489
dc.identifier.volume49
dc.identifier.wos001069509700003
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpringer Heidelberg
dc.relation.journalArabian Journal For Science And Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectArtificial neural network
dc.subjectCognitive radio
dc.subjectErgodic capacity estimation
dc.subjectMultilayer perceptron
dc.subjectSupervised learning
dc.subjectScience & technology
dc.subjectMultidisciplinary sciences
dc.titleErgodic capacity estimation with artificial neural networks in noma-based cognitive radio systems
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication18103778-d591-4f7d-8098-b888ca3d32c0
relation.isAuthorOfPublication.latestForDiscovery18103778-d591-4f7d-8098-b888ca3d32c0

Files

Collections