Publication:
On the exact and numerical solutions to a new (2

dc.contributor.author
dc.contributor.buuauthorOzkan, Yesim Saglam
dc.contributor.buuauthorYasar, Emrullah
dc.contributor.buuauthorCelik, Nisa
dc.contributor.buuauthorSAĞLAM ÖZKAN, YEŞİM
dc.contributor.buuauthorYAŞAR, EMRULLAH
dc.contributor.buuauthorÇELİK, NİSA
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.orcid0000-0002-1364-5137
dc.contributor.orcid0000-0003-4732-5753
dc.contributor.researcheridABD-1401-2020
dc.contributor.researcheridG-5333-2017
dc.date.accessioned2024-06-13T11:05:58Z
dc.date.available2024-06-13T11:05:58Z
dc.date.issued2021-01-01
dc.description.abstractThe aim of this paper is to introduce a novel study of obtaining exact solutions to the (2+1) - dimensional conformable KdV equation modeling the amplitude of the shallow-water waves in fluids or electrostatic wave potential in plasmas. The reduction of the governing equation to a simpler ordinary differential equation by wave transformation is the first step of the procedure. By using the improved tan(phi/2)-expansion method (ITEM) and Jacobi elliptic function expansion method, exact solutions including the hyperbolic function solution, rational function solution, soliton solution, traveling wave solution, and periodic wave solution of the considered equation have been obtained. We achieve also a numerical solution corresponding to the initial value problem by conformable variational iteration method (C-VIM) and give comparative results in tables. Moreover, by using Maple, some graphical simulations are done to see the behavior of these solutions with choosing the suitable parameters.
dc.identifier.doi10.1515/nleng-2021-0005
dc.identifier.endpage65
dc.identifier.issn2192-8010
dc.identifier.issue1
dc.identifier.startpage46
dc.identifier.urihttps://doi.org/10.1515/nleng-2021-0005
dc.identifier.urihttps://hdl.handle.net/11452/42149
dc.identifier.volume10
dc.identifier.wos000664786700005
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherDe Gruyter
dc.relation.journalNonlinear Engineering - Modeling And Application
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectFractional differential-equations
dc.subject1st integral method
dc.subjectConservation-laws
dc.subjectMkdv equation
dc.subjectWave
dc.subjectSoliton
dc.subjectWidth
dc.subjectSolitons
dc.subjectKorteweg-de vries equation
dc.subjectExact solutions
dc.subjectImproved tan(phi / 2)-expansion method
dc.subjectJacobi elliptic function expansion method
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectPhysical sciences
dc.subjectEngineering, mechanical
dc.subjectMathematics, interdisciplinary applications
dc.subjectEngineering
dc.subjectMathematics
dc.titleOn the exact and numerical solutions to a new (2
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Bölümü
relation.isAuthorOfPublicationed405fea-693b-4feb-afc7-0414e6f6891c
relation.isAuthorOfPublicationa5ff66ef-0c87-4d77-a467-e3150f51624c
relation.isAuthorOfPublicationaf0a384c-f14d-4920-80dd-49fa9a567259
relation.isAuthorOfPublication.latestForDiscoveryed405fea-693b-4feb-afc7-0414e6f6891c

Files