Publication:
Optimization for multi-cell thin-walled tubes under quasi-static three-point bending

No Thumbnail Available

Date

2022-05-01

Authors

Albak, Emre İsa

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Heidelberg

Research Projects

Organizational Units

Journal Issue

Abstract

Approaches such as changing the cell number, changing the rib direction, and adding internal structure are utilized to acquire a multi-cell thin-walled structure, and these approaches have meaningful effects on the crashworthiness performance of multi-cell thin-walled tubes. In this study, a comprehensive review is done by using and comparing these approaches together under quasi-static three-point bending conditions. A different crashworthiness indicator is better for each of the produced multi-cell thin-walled structures. The overall best tubes are determined by the complex proportion assessment (COPRAS), a multi-criteria decision-making technique. The weights used in the COPRAS technique are calculated by the entropy method. Thus, two different tubes are chosen as the best ones. Then, multi-objective optimization is performed on these tubes with the multi-objective genetic algorithm (MOGA). The surrogate models of PCF and SEA, which are defined as the objectives in multi-objective optimization studies, are obtained by the (radial basis functions) RBF. Multi-objective optimized multi-cell thin-walled W1L1 and W1L1S1 tubes achieved the same SEA values as the W0L0 square tube at 13.1% and 15.4% lower PCF values, respectively.

Description

Keywords

Energy-absorption characteristics, Multiobjective crashworthiness optimization, Crushing analysis, Square, Design, Collapse, Single, Three-point bending, Crashworthiness, Copras, Multi-objective optimization, Multi-cell thin-walled tube, Science & technology, Technology, Engineering, mechanical, Engineering

Citation

0

Views

0

Downloads

Search on Google Scholar