Publication:
Use of multivariate adaptive regression splines (MARS) for predicting parameters of breast meat in quails

dc.contributor.authorŞengül, Turgay
dc.contributor.authorÇelik, Şenol
dc.contributor.authorŞengül, Ömer
dc.contributor.buuauthorŞENGÜL, ÖMER
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentHayvancılık Bölümü. Bilim
dc.contributor.orcid0000-0001-5078-2002
dc.contributor.researcheridAAH-2915-2021
dc.date.accessioned2024-07-05T06:12:37Z
dc.date.available2024-07-05T06:12:37Z
dc.date.issued2020-08-01
dc.description.abstractThe aim of this study was to determine the effects of variety and sex on the color of the breast meat (brightness: L*, red color: a*, yellow color: b*) in quails. In this study, a total of 144 quails from three different varieties (Wild-type, Dark Brown and Golden) were employed. The color and pH parameters of the breast meat were measured in quails slaughtered in week 10. In order to predict the brightness (L*), red color (a*), and yellow color (b*) values of the breast meat, Multivariate Adaptive Regression Splines (MARS) models were implemented. When determining the best model, attention was paid to minimize the Generalized Cross Validation (GCV), Root Mean Square Error (RMSE), and Mean Absolute Deviation (MAD) statistics and to maximize coefficient of determination (R-2) and adjusted R-2 values. In the MARS models constructed to predict L*, a* and b*, it was found that R-2 values were 0.999, 0.999, and 0.999; adjusted R-2 values were 0.997, 0.992, and 0.996; and RMSE values were 0.068, 0.082, and 0.038, respectively. As a result, it could be suggested that MARS modeling may be a useful tool for the prediction of the color parameters of the breast meat.
dc.identifier.doi10.36899/JAPS.2020.4.0092
dc.identifier.endpage793
dc.identifier.issn1018-7081
dc.identifier.issue4
dc.identifier.startpage786
dc.identifier.urihttps://doi.org/10.36899/JAPS.2020.4.0092
dc.identifier.urihttps://thejaps.org.pk/Volume/2020/30-04/02.php
dc.identifier.urihttps://hdl.handle.net/11452/42940
dc.identifier.volume30
dc.identifier.wos000547580900003
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherPakistan Agricultural Scientists Forum
dc.relation.journalJournal of Animal and Plant Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectArtificial neural-network
dc.subjectLive weight
dc.subjectQuality
dc.subjectCarcass
dc.subjectTraits
dc.subjectPeriod
dc.subjectQuail
dc.subjectBreast meat
dc.subjectMeat color
dc.subjectMars model
dc.subjectScience & technology
dc.subjectLife sciences & biomedicine
dc.subjectAgriculture, multidisciplinary
dc.subjectBiology
dc.subjectVeterinary sciences
dc.subjectAgriculture
dc.subjectLife sciences & biomedicine - other topics
dc.subjectVeterinary sciences
dc.titleUse of multivariate adaptive regression splines (MARS) for predicting parameters of breast meat in quails
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentZiraat Fakültesi/Hayvancılık Bölümü. Bilim
relation.isAuthorOfPublicationfc63e8e4-c693-45ab-a51c-a7ed290bf551
relation.isAuthorOfPublication.latestForDiscoveryfc63e8e4-c693-45ab-a51c-a7ed290bf551

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sengul_vd_2020.pdf
Size:
646.9 KB
Format:
Adobe Portable Document Format