Publication:
Aircraft conceptual design using metaheuristic-based reliability optimisation

dc.contributor.authorChampasak, Pakin
dc.contributor.authorPanagant, Natee
dc.contributor.authorPholdee, Nantiwat
dc.contributor.authorVio, Gareth A.
dc.contributor.authorBureerat, Sujin
dc.contributor.authorYıldız, Betül Sultan
dc.contributor.authorYıldız, Ali Rıza
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.orcid0000-0002-7493-2068
dc.contributor.researcheridF-7426-2011
dc.contributor.researcheridAAL-9234-2020
dc.date.accessioned2024-11-18T05:45:31Z
dc.date.available2024-11-18T05:45:31Z
dc.date.issued2022-08-19
dc.description.abstractThe reliability optimisation methodology is developed to solve a conceptual design problem of a fixed-wing Unmanned Aerial Vehicle (UAV). The reliability quantification is based on the most probable point (MPP) concept, leading to a double-loop optimisation problem. The design problem is formulated as an outer-loop multiobjective optimisation for the main design problem and an inner-loop optimisation for estimating a reliability index (beta) of a design solution. The goal of the outer-loop optimisation is to minimise the aircraft take-off weight, and simultaneously maximise beta. The aerodynamic and stability properties of an aircraft solution are calculated by a vortex lattice method (VLM), while various types of empirical weight methods are obtained. The design problem is set up to have uncertainties in calculating aircraft empty weight and aerodynamic coefficients and derivatives. For the inner loop optimisation, the MPP is used for approximating the reliability index and probability of failure (pf). Multiobjective Meta-heuristic with Iterative Parameter Distribution Estimation (MMIPDE) and Success-History based Adaptive Differential Evolution (SHADE) are used for solving the outer- and inner-loop optimisations respectively. Four parameters setting strategies for running metaheuristics are proposed for use with the proposed metaheuristic-based reliability optimisation. The comparative results reveal that the best dynamic parameter setting from this study can reduce runtime by 22.5% compared to the traditional metaheuristic run while maintaining competitive results. (C) 2022 Elsevier Masson SAS. All rights reserved.
dc.description.sponsorshipNational Research Council of Thailand (NRCT) - N42A650549
dc.description.sponsorshipDefence Technology Institute, Thailand
dc.description.sponsorshipThailand Research Fund (TRF) - PHD/0178/2560
dc.identifier.doi10.1016/j.ast.2022.107803
dc.identifier.issn1270-9638
dc.identifier.urihttps://doi.org/10.1016/j.ast.2022.107803
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1270963822004771?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/11452/47956
dc.identifier.volume129
dc.identifier.wos000860713000002
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier France-Editions Scientifiques Medicales Elsevier
dc.relation.journalAerospace Science and Technology
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectTopology optimization
dc.subjectUncertainties
dc.subjectTrusses
dc.subjectRobust
dc.subjectShape
dc.subjectReliability optimisation
dc.subjectAircraft conceptual design
dc.subjectReliability index
dc.subjectMost probable point
dc.subjectMetaheuristics
dc.subjectEngineering
dc.titleAircraft conceptual design using metaheuristic-based reliability optimisation
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscoverye544f464-5e4a-4fb5-a77a-957577c981c6

Files