Publication:
On the diophantine equation x2

dc.contributor.authorSoydan, Gökhan
dc.contributor.authorTzanakis, Nikos
dc.contributor.buuauthorCANGÜL, İSMAİL NACİ
dc.contributor.buuauthorCangül, Ismail Naci
dc.contributor.buuauthorDEMİRCİ, MUSA
dc.contributor.buuauthorDemirci, Musa
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.researcheridJWC-9521-2024
dc.contributor.researcheridJ-3505-2017
dc.date.accessioned2024-11-26T05:41:08Z
dc.date.available2024-11-26T05:41:08Z
dc.date.issued2010-12-01
dc.description.abstractWe give the complete solution (n, a, b, x, y) of the title equation when gcd (x, y) = 1, except for the case when x a b is odd. Our main result is Theorem 1.
dc.identifier.endpage225
dc.identifier.issn0208-6573
dc.identifier.issue2
dc.identifier.startpage209
dc.identifier.urihttps://hdl.handle.net/11452/48464
dc.identifier.volume43
dc.identifier.wos000213791900007
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherWydawnictwo Naukowe Uam
dc.relation.journalFunctiones Et Approximatio Commentarii Mathematici
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.subjectPower values
dc.subjectForms
dc.subjectExponential diophantine equation
dc.subjectS-integral points of an elliptic curve
dc.subjectThue-mahler equation
dc.subjectLucas sequence
dc.subjectLinear form in logarithms of algebraic numbers
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.titleOn the diophantine equation x2
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Ana Bilim Dalı
local.indexed.atWOS
relation.isAuthorOfPublication601ef81f-9bdf-4a4a-9ac1-82a82260384d
relation.isAuthorOfPublication939e5708-c157-458f-9a96-64c516b838b5
relation.isAuthorOfPublication.latestForDiscovery939e5708-c157-458f-9a96-64c516b838b5

Files