Publication: A density and connectivity based decision rule for pattern classification
dc.contributor.author | İnkaya, Tülin | |
dc.contributor.buuauthor | İNKAYA, TÜLİN | |
dc.contributor.department | Mühendislik Fakültesi | |
dc.contributor.department | Endüstri Mühendisliği Bölümü | |
dc.contributor.orcid | 0000-0002-6260-0162 | |
dc.contributor.researcherid | AAH-2155-2021 | |
dc.date.accessioned | 2024-08-09T11:32:48Z | |
dc.date.available | 2024-08-09T11:32:48Z | |
dc.date.issued | 2015-02-01 | |
dc.description.abstract | In this paper we propose a novel neighborhood classifier, Surrounding Influence Region (SIR) decision rule. Traditional Nearest Neighbor (NN) classifier is a distance-based method, and it classifies a sample using a predefined number of neighbors. In this study neighbors of a sample are determined using not only the distance, but also the connectivity and density information. One of the well-known proximity graphs, Gabriel Graph, is used for this purpose. The neighborhood is unique for each sample. SIR decision rule is a parameter-free approach. Our experiments with artificial and real data sets show that the performance of the SIR decision rule is superior to the k-NN and Gabriel Graph neighbor (GGN) classifiers in most of the data sets. | |
dc.identifier.doi | 10.1016/j.eswa.2014.08.027 | |
dc.identifier.eissn | 1873-6793 | |
dc.identifier.endpage | 912 | |
dc.identifier.issn | 0957-4174 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 906 | |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2014.08.027 | |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0957417414005090 | |
dc.identifier.uri | https://hdl.handle.net/11452/43859 | |
dc.identifier.volume | 42 | |
dc.identifier.wos | 000343854900019 | |
dc.indexed.wos | WOS.SCI | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.journal | Expert Systems With Applications | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Nearest-neighbor rule | |
dc.subject | Graphs | |
dc.subject | Bayes | |
dc.subject | Classification | |
dc.subject | Nearest neighbor | |
dc.subject | Gabriel graph | |
dc.subject | Density | |
dc.subject | Connectivity | |
dc.subject | Science & technology | |
dc.subject | Technology | |
dc.subject | Computer science, artificial intelligence | |
dc.subject | Engineering, electrical & electronic | |
dc.subject | Operations research & management science | |
dc.subject | Computer science | |
dc.subject | Engineering | |
dc.title | A density and connectivity based decision rule for pattern classification | |
dc.type | Article | |
dspace.entity.type | Publication | |
local.contributor.department | Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü | |
relation.isAuthorOfPublication | 50789246-3e56-4752-a821-3ae9957be346 | |
relation.isAuthorOfPublication.latestForDiscovery | 50789246-3e56-4752-a821-3ae9957be346 |